Generic filters
Exact matches only

Enzym-System für die Wasserstoff-Wirtschaft

Kategorie:
Thema:
Autor: Redaktion

Enzym-System für die Wasserstoff-Wirtschaft
Ein Ausgangsstoff für die Seitenketten des schützenden Polymers für das Enzym. (Bild: Jan Winter / TUM)

Einen Traum der Energiewirtschaft könnte ein Enzym wahr werden lassen: Effizient kann es sowohl aus Strom Wasserstoff erzeugen, als auch Wasserstoff in Strom umwandeln. Zu seinem Schutz ist das Enzym in ein Polymer eingebettet. Ein internationales Forschungsteam mit maßgeblicher Beteiligung von Wissenschaftlern der Technischen Universität München (TUM) hat das System jetzt im Wissenschaftsjournal Nature Catalysis vorgestellt.

Sowohl Brennstoffzellen, die Wasserstoff in Strom umwandeln, als auch Elektrolyseure, die durch Wasserspaltung mithilfe von Strom Wasserstoff herstellen können, brauchen das seltene und damit teure Edelmetall Platin als Katalysator. Die Natur hat eine andere Lösung: Enzyme, sogenannte Hydrogenasen. Sie katalysieren die Umwandlung von Wasserstoff sehr schnell und nahezu ohne Energieverlust.

Allerdings galten diese Biokatalysatoren bisher als ungeeignet für den industriellen Einsatz, da sie hoch empfindlich gegen Sauerstoff sind. Einem Forschungsteam der TU München, der Ruhr-Universität Bochum, des CNRS Marseille und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr ist es nun gelungen, die empfindlichen Enzyme so in ein schützendes Polymer einzubauen, dass sie auch für die technische Wasserstoffumwandlung eingesetzt werden können.

Haltbarkeit und Aktivität im Widerstreit

Das Einbetten in sogenannte Redox-Polymere, Kunststoffe, deren Seitengruppen Elektronen übertragen können, hatte bisher einen entscheidenden Nachteil: Sie setzten dem Fluss von Elektronen einen hohen Widerstand entgegen. Um ihn zu überwinden, musste man Energie investieren, und diese ging in Form von Wärme verloren. Die Fähigkeit, Wasserstoff zu erzeugen, büßten die eingebetteten Hydrogenasen dabei ganz ein.

Durch geschickte Wahl der Polymer-Seitengruppen gelang es dem Forschungsteam nun das Redoxpotenzial des Polymers so einzustellen, dass sie nur noch eine geringe Überspannung brauchten, um den Widerstand zu überwinden.

Bei genaueren Untersuchungen stellten sie fest, dass sich das Potenzial der Seitengruppen durch den Einbau in die Polymermatrix leicht zu positiven Werten hin verschoben hatte. In einem weiteren Anlauf setzten sie daher eine Seitengruppe mit einem entsprechend negativen Potenzial ein. Die Hydrogenase konnte nun die Reaktion ohne Energieverlust wieder in beiden Richtungen katalysieren.

Biokatalysator für die Wasserstoff-Umwandlung

Mit diesem System baute das Forschungsteam eine Brennstoffzelle auf. Sauerstoff wird in dieser durch das Enzym Bilirubin-Oxidase aus dem Bakterium Myrothecium verrucaria reduziert, während die im Polymerfilm eingebettete Hydrogenase aus dem Bakterium Desulfovibrio desulfuricans den Wasserstoff oxidiert und dabei Strom erzeugt.

Mit einer Leerlaufspannung von 1,16 V, dem höchsten jemals für ein System dieser Art gemessenen Wert, erreichte die Zelle einen Wert nahe des thermodynamischen Maximums. Gleichzeitig erreichte die Zelle mit drei Milliampere pro Quadratzentimeter eine für biologische Zellen sehr hohe Stromdichte.

Auch für die umgekehrte Reaktion, die Wasserstoffproduktion durch Aufnahme von Elektronen, ist das System einsetzbar: Seine Effizienz bei der Energieumwandlung liegt auch bei Stromdichten von über vier Milliampere pro Quadratzentimeter nahe 100 Prozent.

Die weitere Forschung des Teams zielt nun drauf ab, die Stabilität der Hydrogenasen bei höheren Stromdichten zu verbessern, um Systemen mit Katalysatoren auf Platin-Basis Konkurrenz machen zu können. Darüber hinaus können die Erkenntnisse auch auf andere hochaktive aber empfindliche Katalysatoren für Energieumwandlung und Elektrosynthese übertragen werden. Unmittelbare Ziele sind hier vor allem Kohlendioxid-reduzierende Enzyme, die mithilfe vom Strom flüssige Brennstoffe oder Zwischenprodukten aus Kohlendioxid herstellen können.

Förderung der Forschung

Die Forschungsarbeiten wurden gefördert durch einen Starting Grant des European Research Councils (ERC), das französische Centre Nationale de la Recherche Scientifique (CNRS) und die Aix-Marseille Université, die Deutsche Forschungsgemeinschaft (DFG) im Rahmen einer Gemeinschaftsförderung zusammen mit der Agence Nationale de la Recherche, des DFG Schwerpunktprogramms „Iron–Sulfur for Life“ (SPP 1927), die Max-Planck-Gesellschaft sowie im Falle des Exzellenzclusters RESOLV durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Exzellenzstrategie des Bundes und der Länder.

Originalpublikation: Steffen Hardt, Stefanie Stapf, Dawit T. Filmon, James A. Birrell, Olaf Rüdiger, Vincent Fourmond, Christophe Léger & Nicolas Plumeré: Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film, in: Nature Catalysis Vol. 4, 251–258 (2021) – DOI: 10.1038/s41929-021-00586-1

 

Quelle: Technische Universität München

Das könnte Sie auch interessieren

Entsalzung überflüssig: Forscher gewinnen Wasserstoff aus Meerwasser
H2-Kompetenzverbund des DVGW präsentiert Forschungsergebnisse
Forscher gewinnen Wasserstoff aus Luftfeuchtigkeit

Publikationen

Wasserstoff in der Praxis, Bd. 1: Infrastruktur

Wasserstoff in der Praxis, Bd. 1: Infrastruktur

Erscheinungsjahr: 2021

Das Buchreihe „Wasserstoff in der Praxis“ vermittelt Praktikern wichtige Informationen über den Stand der Technik und zukünftige Entwicklungen. Im 1. Band werden die Herausforderungen dargestellt, die Wasserstoff an die Gasinfrastruktur und ...

Zum Produkt

Handbuch der Gasverwendungstechnik

Handbuch der Gasverwendungstechnik

Erscheinungsjahr: 2019

Die deutsche Energiewende fokussiert neben dem Aufbau der Erneuerbaren Energien vor allem auch die Erhöhung der Energieeffizienz in allen Bereichen. Beides steht bei dem komplett neu gestalteten Handbuch der Gasverwendungstechnik im Mittelpunkt. ...

Zum Produkt

Erneuerbarer Wasserstoff mit Solar-Wind-Hybridkraftwerken

Erneuerbarer Wasserstoff mit Solar-Wind-Hybridkraftwerken

Autor: Raphael Niepelt, Rolf Brendel

Grüner Wasserstoff ist ein Schlüsselelement für die Transformation und Defossilierung des Energiesystems. Mit der Nationalen Wasserstoffstrategie hat sich die Politik klar zu grünem Wasserstoff bekannt, wobei der Bedarf vor allem über Importe ...

Zum Produkt